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Adiabatic Dipolar Recoupling in Solid-State NMR: The DREAM Scheme
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A theoretical treatment of the DREAM adiabatic homonuclear
recoupling experiment is given using Floquet theory. An effective
Hamiltonian is derived analytically and the time evolution of the
density operator in the adiabatic limit is described. Shape cycles are
proposed and characterized experimentally. Application to spin-
pair filtering and as a mixing period in a 2D correlation experiment
is explored and the experimental results are compared to theoretical
predictions and exact numerical simulations. C© 2001 Academic Press
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1. INTRODUCTION

Most NMR structure-determination schemes are based
dipolar interactions which depend in a simple and direct w
on internuclear distances and bond angles. In anisotropic p
(e.g., in static solids or oriented liquids), the system Hami
nian explicitly contains dipolar terms which are manifest in
spectrum as line splittings or as a polarization-transfer me
nism during the mixing time in a two-dimensional correlati
experiment. In “straightforward” magic-angle spinning (MA
spectroscopy, however, the dipolar interaction is absent in
averaged time-independent (“secular”) system Hamilton
Time-dependent (“nonsecular”) dipolar terms are still pres
but usually have, for spinning frequencies greatly exceeding
magnitude of these interactions, a negligible influence on
time evolution of the spin system.

In recent years, a number of homonuclear and heteronu
recoupling schemes have been developed which reintroduce
ular dipolar contributions into the system Hamiltonian und
MAS. The recoupling is often achieved by applying RF pul
or a continuous-wave (cw) RF field during the recoupling
riod. In this publication, we concentrate on the homonucl
case (1–17).

In multiply 13C-labeled compounds, the spectral resolut
often increases with increasing spinning frequency and i
therefore, beneficial to develop recoupling schemes that ca
applied at high MAS frequencies. For many pulsed recoup
schemes, the ratio of RF-field strength (in frequency units
spinning frequency is between 3 and 10. This makes it diffi
to successfully apply most of the existing recoupling schem
1 To whom correspondence should be addressed. Fax: +41-1-632-1
E-mail: beme@nmr.phys.chem.ethz.ch.
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at spinning frequencies above 25 kHz. A noticeable excep
from this RF-field strength requirement is the HORROR exp
iment (9) which uses RF fields which are by a factor of 2 low
than the MAS frequency. Due to the low RF-field strength,
HORROR experiment shows a very strong sensitivity to RF-fi
inhomogeneity and chemical-shift offsets.

Recently, we have demonstrated that an adiabatic pas
through the HORROR recoupling condition, obtained by an R
amplitude modulation, is able to remove the above-mentio
drawbacks of the HORROR experiment while retaining the
vorable RF-amplitude requirements. This experiment, which
denote DREAM (dipolar recoupling enhanced by amplitu
modulation) (18), is the first example of a homonuclear ad
batic polarization-transfer scheme that exploits double-quan
transitions. Homonuclear adiabatic zero-quantum mixing
been realized by an adiabatic passage through the rotati
resonance recoupling condition using spinning-frequency ra
(19) and is also conceivable in the rotating frame as implemen
in the rotational-resonance tickling experiment (20–22). Adi-
abatic schemes have also found a number of application
heteronuclear polarization-transfer schemes where differen
fields can be applied independently to the two coupled s
(23–26).

The DREAM sequence demonstrates the two well-kno
general advantages of adiabatic pulse schemes over their
den” equivalents: a more complete polarization transfer in p
dered samples (theoretically an efficiency of 100% is obtai
compared to a maximum of 73% for ‘sudden’ experiments
isolated spin-1/2 pairs) and robustness with respect to chemic
shift differences and experimental imperfections like RF-fi
inhomogeneity.

In this publication, we discuss the framework for a theoret
description of adiabatic homonuclear recoupling experime
We use a Floquet approach (27–32) to deduce a time-indepen
dent Hilbert-space Hamiltonian using perturbation theory. T
trajectory of the density operator during a DREAM period u
der the assumption of a fully adiabatic behavior is given a
the theoretical models are verified experimentally. The bro
bandedness of the DREAM sequence is improving with hig
spinning frequency.

The performance of the DREAM recoupling sequence
described theoretically and measured experimentally for
1090-7807/01 $35.00
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FIG. 1. Schematic representation of a DREAM spin-pair filter. The o
cans lead to an inversion of the magnetization of coupled spin pairs w
hey do not change the magnetization of uncoupled spins. The even scans
oupled and uncoupled spins invariant. The difference of the two experim
ields a spectrum that contains only signals from the coupled spins. One c
lso add the two scans to select the signals from the uncoupled spins only

ifferent applications: in the context of spin-pair filtering an
n the context of two-dimensional correlation spectroscopy

mixing sequence. Two-spin filters (e.g., double-quantum
ers) are useful to suppress the natural-abundance backgr
ignals in partially labeled materials (2, 9, 33, 34). Such suppres-
ion schemes are particularly important if labeled domains
arge biomolecule are investigated where the natural-abund
ackground of the rest of the molecule obscures the unfilte

pectrum (35). The principle of spin-pair filtering using adia-

=
k

Äk Skz+
k m=−2

Äk exp(imωrt) Skz. [2]
batic sweeps (18) is illustrated in Fig. 1. In the context of two- m6=0
FIG. 2. Schematic representation of the use of a DREAM recoupling in
pins. Without mixing, the two-dimensional spectrum has only diagonal p
ixing time, all intensity is found in the cross peaks which have a negative
, AND MEIER
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dimensional correlation spectroscopy, the DREAM seque
leads, for a spin pair, to a spectrum where all intensity is foun
the cross peaks. The cross peaks have negative intensity be
an adiabatic double-quantum process is applied. This conce
schematically illustrated in Fig. 2.

2. THEORETICAL DESCRIPTION

2.1. The Hamiltonian

We consider a system ofN homonuclear spins,Sk, with a
spin-quantum number of 1/2. It is assumed that all other nucle
(heteronuclei) can be efficiently decoupled. During the DREA
period of an experiment, e.g., in a correlation experim
(Fig. 3a) or in a two-spin-filter experiment (Fig. 3b), a
amplitude-modulated cw radiofrequency irradiation is appl
to the spins. The Hamiltonian in the usual rotating frame wh
rotates with the Zeeman frequency about the external magn
field B0 contains the chemical shift*CS, the dipolar interaction
*d, the homonuclearJ-coupling*J , and the interaction of the
spins with the applied RF field*RF:

*(t, T) = *CS(t)+*d(t)+*J +*RF(T). [1]

The time dependences of the chemical shift and the dipola
teraction are caused by magic-angle sample spinning and
periodic with a cycle time ofτr = 2π/ωr, whereωr/(2π ) is the
MAS spinning frequency. The time-scale of the RF-amplitu
variation is much slower thanτr and we can assume that the am
plitude of the RF irradiation,ω1, is constant over a single roto
period. Therefore we denote the slow, parametric time dep
dence by a separate time variable,T (36).
The chemical-shift Hamiltonian can be written as the sum of
isotropic,*0

CS, and an anisotropic,*a
CS, contribution:

*CS(t) = *0
CS+*a

CS(t)∑ ∑ 2∑
the mixing time of a homonuclear shift-correlation spectrum for a coupled pair of
eaks. The dipolar splitting is not resolved in the schematic spectrum shown.With a
signal intensity.
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FIG. 3. Pulse sequence for (a) the two-dimensional DREAM correlat
experiment and (b) the DREAM spin-pair selective experiments. (c) Four
ferent amplitude shapes which can be used in the spin-pair filter experimen
appropriate modification of the receiver phase.

The Fourier coefficients of the anisotropic chemical-sh
contribution (Ä(m)

k ) are listed in the Appendix. The dipola
Hamiltonian is given by

*d(t) =
∑
k<`

dk`(t)

(
2SkzS̀ z− 1

2
(S+k S−` + S−k S+` )

)
, [3]

wheredk`(t) =
∑

m=±2,±1 d(m)
k` eimωrt has no time-independen

contribution. The Fourier coefficientsd(m)
k` are also listed in the

Appendix. TheJ-coupling is assumed to be isotropic:

*J = 2π
∑
k<`

Jk`(Sk · S̀ ). [4]

The anisotropic contributions of theJ-coupling can be included
into *d. The last term of Eq. [1] is the interaction of the spi
with the RF field which is chosen to be along thex-axis of the

rotating frame and is given by

*RF(T) = ω1(T)
∑

k

Skx. [5]
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For the following discussion, it is convenient to write*(t, T)
in a tilted coordinate system where thez-axis is aligned with the
effective-field direction (averaged over a rotor period) for ea
single spin. The average effective-field direction is given by

Ä
(0)
k

ωeff, k(T)
Skz+ ω1(T)

ωeff, k(T)
Skx, [6]

and the effective-field strength is defined asωeff, k(T) =
±
√

(Ä(0)
k )2+ (ω1(T))2, where the sign of the square root

negative for a positive gyromagnetic ratio of the nuclei u
der consideration. The corresponding transformation into
tilted frame of reference can be described by a rotation oper
R(T) = πk exp(iϑk(T)Sky), where the tilt angle of the effec
tive field of spink is defined asϑk(T) = arctan(ω1(T)/Ä(0)

k ).
The tilted system Hamiltoniañ*(t, T) = R(T)*(t, T)R†(T) is
given by

*̃(t, T) = *̃eff(T)+ *̃a
CS(t, T)+ *̃d(t, T)+ *̃J(T) [7]

with

*̃eff(T) = *̃0
CS(T)+ *̃RF(T) =

∑
k

ωeff, k(T)Skz, [8]

*̃a
CS(t, T) =

∑
k

Äa
k(t) cos(ϑk(T))Skz

+
∑

k

Äa
k(t) sin(ϑk(T))Skx, [9]

and

*̃d(t, T) =
∑
k<`

dk`(t)

{
Ad

k`(T)SkzS̀ z+ Bd
k`(T)

1

2

× (S+k S−` + S−k S+` )+ Rd
k`(T)(SkzS

+
` + SkzS

−
` )

+Vd
k`(T)(S+k S̀ z+ S−k S̀ z)+ Qd

k`(T)
1

2

× (S+k S+` + S−k S−` )

}
. [10]

The coefficientsAd
k`(T), Bd

k`(T), Rd
k`(T),Vd

k`(T), and Qd
k`(T)

are listed in the Appendix. TheJ-coupling term in the tilted
frame is given by

*̃J(T) =
∑
k<`

π Jk`

{
AJ

k`(T)2SkzS̀ z+ BJ
k`(T)

1

2

× (S+k S−` + S−k S+` )+ RJ
k`(T)(SkzS

+
` + SkzS

−
` )

+V J
k`(T)(S+k S̀ z+ S−k S̀ z)+ QJ

k`(T)
1

2

× (S+k S+` + S−k S−` )

}
[11]
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and the coefficientsAJ
k`(T), BJ

k`(T), RJ
k`(T),V J

k`(T), and QJ
k`

(T) can also be found in the Appendix. We can express the e
time-dependent Hamiltoniañ*(t, T) in a Fourier series as

*̃(t, T) =
2∑

n=−2

*̃(n)(T) · einωrt , [12]

where the*̃(n)(T) are the Fourier coefficients of the Ham
tonian. The terms of Eq. [12] are composed of the terms
Eqs. [8] to [11] grouped by their respective time dependenc

If we denote the spin states of each spin as|α〉 and|β〉 accord-
ing to their polarization with respect to the effective quantizat
direction defined by*̃eff, the dipolar andJ interactions can in-
duce zero-quantum transitions (coefficientB), single-quantum
transitions (coefficientsR andV), and double-quantum trans
tions (coefficientQ).

All dipolar terms aret-time dependent and they will onl
significantly influence the spectrum at special recoupling c
ditions which occur during the slow RF amplitude variation
certain ratios of the RF-field strength and the spinning freque

The J-interaction term, on the other hand, ist-time indepen-
dent and is able to influence the dynamics of the spin system
bitrary ratios of MAS spinning frequency and RF-field streng
We will discuss later in this publication that theJ-interaction
does not play a significant role in practical applications.

The chemical-shift anisotropy can induce single-quant
transitions due to the second term of Eq. [9]. In addition
modulates the energy levels of the|α〉 and |β〉 states of each
spin through the first term of Eq. [9]. The consequences of
modulation will be discussed below.

2.2. Floquet Description

To discuss the spin dynamics, it is beneficial to replace
time-dependent Hamiltoniañ*(t, T) by one that ist-time in-
dependent. For simplicity, we will treat only two-spin syste
in this chapter. Nevertheless, we will keep the general nota
where we denote one spin byk and the other bỳ, because it is
easy to generalize the Hamiltonian for a many-spin system.
calculation of the trajectory of the density operator, howev
may become quite demanding in a many-spin system.

For stroboscopic observation, an average Hamiltonian
scription could be chosen with respect to the fast time scalt)
and the DREAM experiment can indeed be described by ave
Hamiltonian theory (18). Here, we choose the more general F
quet approach and we define a Floquet Hamiltonian*̃F(T) that
is only time dependent on the slow time scale ofT . The Floquet
description does not require ana priori choice of a particular
interaction frame to properly describe the recoupling condit
(31). The Floquet-space basis functions|φ, n〉 are obtained from
the Hilbert-space basis functions|φ〉 by dressing with a Fourie

coefficientn that runs from−∞ to∞ (27). For numerical ap-
plications, the range ofn can be truncated. This is, howeve
not necessary in the present context. A schematic matrix rep
, AND MEIER
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sentation of*̃F(T) is shown in Fig. 4. The matrix elements a
defined as

〈ν,m|*̃F(T)|µ, n〉 = 〈ν∣∣*̃(n−m)(T)
∣∣µ〉+ nωrδmnδνµ, [13]

FIG. 4. Matrix representation of the Floquet Hamiltonian. (a) Schema
drawing indicating the different subblocks defined by the Fourier indices.
1 represents the unity operator. (b) Explicit matrix elements of the Hamilton
*̃(0) correspondings to the subblock with the Fourier index zero on the m
diagonal of the full Floquet matrix without thenωr 1 contribution. The elements
contain contributions from the effective field and from theJ-coupling. (c) Ex-
plicit matrix elements of the Hamiltoniañ*(i) corresponding to the subblock
r,
re-

with the Fourier indicesi = {−2,−1, 1, 2} on the side diagonals of the full
Floquet matrix. The elements contain contributions from the dipolar coupling
and from the anisotropic part of the chemical shift.
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based on the Fourier coefficients̃*(n)(T) defined in Eq. [12].
These coefficients are given in Figs. 4b and 4c.

The standard way to solve the equation of motion involves
diagonalization of the Hamiltoniañ*F. In the following, we use
a perturbation treatment for approximate diagonalization (37)
of the Floquet Hamiltonian. We divide the Floquet Hamiltoni
into a dominant part̃*F

0 and a perturbation part̃*F
1. The dom-

inant part*̃F
0 describes the interaction with the mean effect

field (Eq. [8]) and has the matrix elements〈
ν, n

∣∣*̃F
0(T)

∣∣µ, n〉 = 〈ν|*̃eff(T)|µ〉 + nωrδνµ, [14]

while the perturbatioñ*F
1 contains all other terms and is define

as

*̃F
1(T) = *̃F(T)− *̃F

0(T). [15]

The eigenvalues of the unperturbed Floquet Hamilton
*̃F

0 and, in zeroth-order perturbation theory, of*̃F, are given
by

〈
αkα`, n

∣∣*̃F
0

∣∣αkα`, n
〉 = 1

2
(ωeff, k + ωeff, `)+ nωr

〈
αkβ`, n

∣∣*̃F
0

∣∣αkβ`, n
〉 = 1

2
(ωeff, k − ωeff, `)+ nωr

[16]〈
βkα`, n

∣∣*̃F
0

∣∣βkα`, n
〉 = −1

2
(ωeff, k − ωeff, `)+ nωr〈

βkβ`, n
∣∣*̃F

0

∣∣βkβ`, n
〉 = −1

2
(ωeff, k + ωeff, `)+ nωr.

A numerical example for the eigenvalues as a function of
ratio betweenω1 andωr is shown in Fig. 5a. The variableT
has been omitted in the above equation for simplicity of no
tion but all effective field strengths are T-time dependent. T
matrix elements of the perturbatioñ*F

1 can be calculated from
Eqs. [8]–[12].

It is obvious from the matrix elements of̃*(0)(T) (Fig. 4b)
that the diagonal blocks of the Floquet Hamiltonian*̃F contain
additional elements which are not iñ*F

0. These all originate from
theJ-coupling Hamiltonian and represent diagonal element
well as off-diagonal elements iñ*(0)(T).

We will neglect the small shift of the energy level caus
by the J-coupling to the diagonal elements of*̃F

1. The energy
levels in first-order perturbation theory will only be changed
two states of*̃F

0 connected by a matrix element of*̃F
1 are close

to degeneracy (37). From Eq. [16] we can see that the conditi
for degeneracy is

ωeff, k + ωeff, ` = N · ωr, [17]
where the integerN = −1,−2 is limited by the number of
side diagonals in*̃F

1. The sign ofN for the recoupling condi-
PLING IN SOLID-STATE NMR 85
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FIG. 5. (a) Energy-level diagram showing the eigenvalues of the Floq
matrix as a function of the RF-field strength in units ofωr. The isotropic chemica
shifts are set for this example to 0.3·ωr and 0.125·ωr. The expanded areas i
(b) and (c) show the level crossing in zeroth-order (b) and the avoided
crossing in first-order (c) perturbation theory for the|αkα`, n〉 and|βkβ`, n−1〉
states around the generalized HORROR condition.

tion depends on the sign of the gyromagnetic ratio. Here
in the following we assume a positive gyromagnetic ratio, a
the case for carbon nuclei, and consequently a negative sig
the recoupling condition.

For the specific case of the HORROR condition,N = −1,
the only pairwise degenerate states are|αkα`, n〉 and|βkβ`, n−
1〉. The first-order correction to the eigenvalues of*̃F

0 is given
by

〈
αkα`, n

∣∣*̃F
1

∣∣βkβ`, n− 1
〉 = 1

2
d(+1)

k` Qk`(T)
[18]〈

βkβ`, n− 1
∣∣*̃F

1

∣∣αkα`, n
〉 = 1

2
d(−1)

k` Qk`(T).

This contribution lifts the degeneracy of the energy levels at

exact HORROR condition and leads to an avoided level crossing
in the energy-level diagram (see Fig. 5c). The level splitting
at the HORROR condition is simply given by the magnitude
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of the relevant Fourier component of the dipolar coupling (
Appendix), scaled by the geometric factorQk`(T).

At the second resonance condition,N = −2, four energy
levels of *̃F

0 become approximately degenerate (see Fig.
and the relevant subspace is spanned by the (unperturbed
functions |αα, n〉, |αβ, n − 1〉, |βα, n − 1〉, and |ββ, n − 2〉.
The relevant matrix elements at theN = −2 recoupling can be
found in Fig. 4. TheN = −2 resonance condition has be
exploited in the mixed single-quantum and double-quan
(MSD) HORROR experiment (38) and will not be discusse
here.

Avoided level crossings at|N| > 2 appear in higher-orde
perturbation theory in the presence of CSA tensors. Instea
calculating higher-order perturbation contributions, one can
include the CSA terms, which are proportional toSkz (leading
term of Eq. [9]), into the zeroth-order Hamiltoniañ*F

0. In this
case,*̃F

0 is no longer diagonal but has a side-diagonal str
ture. Such an operator can be analytically diagonalized (29, 39–
41), leading to*̃′F0 . The remaining perturbation in the dash
coordinate system̃*′F1 is obtained in full analogy to the trea
ment described in the literature (29, 39–41). The perturbation
*̃′F1 contains dipolar-coupling elements on all side diagon
Therefore, first-order perturbation theory in this frame will i
mediately lead to the higher resonance conditions for|N| > 2.
With increasing|N|, however, the matrix elements decrea
rapidly in size. The appearance of higher-order resonance
ditions leads to some decrease of the dipolar coupling elem
for the|N| = 1, 2 condition.

For the N = −1 HORROR condition we can truncate t
size of the Floquet matrix by retaining only terms in the Floq
Hamiltonian that influence the energy in first-order perturba
theory. Combining Eqs. [16] and [18], we obtain the relev
matrix elements

〈
αkα`, n|*̃F|αkα`, n

〉= 1

2
(ωeff,k(T)+ ωeff,`(T))+ nωr〈

βkβ`, n− 1|*̃F|βkβ`, n− 1
〉

= −1

2
(ωeff,k(T)+ ωeff,`(T))+ (n− 1)ωr〈

αkβ`, n|*̃F|αkβ`, n
〉= 1

2
(ωeff,k(T)− ωeff,`(T))+ nωr. [19]

〈
βkα`, n|*̃F|βkα`, n

〉=−1

2
(ωeff,k(T)− ωeff,`(T))+ nωr〈

αkα`, n|*̃F|βkβ`, n− 1
〉 = 1

2
d(+1)

k` Qk`(T)

〈
βkβ`, n− 1|*̃F|αkα`, n

〉 = 1

2
d(−1)

k` Qk`(T).

As mentioned earlier, the off-diagonal terms of theJ-coupling
˜ (0)
in * (T) can lead to a mixing between the|αkβ`, n〉 and

|βkα`, n〉 states through the zero-quantum term of theJ-
couplingπ Jk`BJ

k`(T) 1
2(S+k S−` + S−k S+` ). This mixing is inde-
, AND MEIER
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pendent of the ratio betweenωr andω1 but requires that the
effective-field difference is smaller than theJ-coupling, i.e.,
| 12ωeff,k − 1

2ωeff,`|. |2π J|. For 13C or 15N spectroscopy, theJ-
couplings are usually small enough that this effect can be
glected except if the RF carrier is placed in the middle betw
two resonances (within the magnitude ofJ) or if the two reso-
nances are almost degenerate. In practical applications, th
rarely of relevance and will not be discussed further.

We can now make the substitutionωeff,k(T) = ω̄k + 1k(T)
whereω̄k is the effective field of spink at the HORROR con-
dition and1k(T) is the time-dependent deviation from this re
onance condition due to an amplitude modulation of the
field. For a spin pair, the matrix representation of the Floq
Hamiltonian of Eq. [19] can be written as the direct sum
(infinitely many) two-by-two matrices H6n and H1n . We de-
fine a double-quantum operator,̃*6 , which has the matrix
representation

H6
n (T) =

[ 1
2(1k(T)+1`(T)) 1

2d(+1)
k` Qk`(T)

1
2d(−1)

k` Qk`(T) − 1
2(1k(T)+1`(T))

]

+
(

n− 1

2

)
ωr

[
1 0
0 1

]
[20]

in a basis spanned by|αkα`, n〉 and |βkβ`, n − 1〉. The part
proportional to the identity matrix can be discarded. Defin
the usual pseudo spin-1/2 operators (42, 43) and denoting them
S6x , S6y , andS6z , Eq. [20] can be written in operator form as

*̃6(T) = (1k(T)+1`(T))S6z

− d′k`(T)
(

cos(ϕk`)S
6
x − sin(ϕk`)S

6
y

)
. [21]

Here, the substitution

d′k`(T) = dk`

2
√

2
Qk`(T) sin

(
2θ`k

)
[22]

was used together with Eq. [A-2] in the Appendix. The same
sult has also been obtained by average Hamiltonian theory (18).
For simplicity, this Hamiltonian can be rotated byϕk` around
S6z to obtain the form

*̃6(T) = (1k(T)+1`(T))S6z − d′k`(T)S6x . [23]

In a basis spanned by|αkβ`, n〉 and|βkα`, n〉, the correspond-
ing zero-quantum operator̃*1

n has the matrix representation

H1
n (T) =

[ 1
2(1k(T)−1`(T)) 0

0 − 1
2(1k(T)−1`(T))

]

+ nωr

[
1 0
0 1

]
. [24]



i
r

v

o

t

l

i

ue
ds
sen.
e-
OR

l-

w-

tude
i-

,
mize
om-

n-
ed
atic
e
pin

rt

me
onal
or

y an
f the
ng

sity
ADIABATIC DIPOLAR RECOU

The operator form of the corresponding Hilbert-space Ham
nian, dropping the terms proportional to the unity operato
given by

*̃1(T) = (1k(T)−1`(T))S1z . [25]

Such a zero-quantum operator does not lead to a time e
tion of an initial density operator which is diagonal in this b
sis. Therefore, the zero-quantum polarization does not ev
during the DREAM period as long as theJ-coupling is not
active.

The Floquet numbers do not influence the NMR observab
Consequently, the time evolution can be described by at-time-
independent Hilbert-space Hamiltonian which is given by
direct sum of the double-quantum Hamiltonian (Eq. [23]) a
the zero-quantum Hamiltonian (Eq. [25]),

*̃(T) = *̃6(T)⊕ *̃1(T) = (1k(T)+1`(T))S6z

+ (1k(T)−1`(T))S1z − d′k`(T)S6x

= 1k(T)Skz+1`(T)S̀ z− d′k`(T)
1

2
(S+k S+` + S−k S−` ).

[26]

2.3. Amplitude Shape and Adiabaticity

The Hamiltonian of Eq. [26], which was derived in the fram
work of first-order perturbation theory, describes a pass
through theN = −1 HORROR condition by means of an amp
tude variation of the applied RF field. This passage is adiab
if

ak`(T) =
√

(1k(T)+1`(T))2+ (d′k`(T))2

|d2k`(T)/dT| À 1. [27]

Note that in general the adiabaticity parameter,ak`(T), will
change over the course of the sweep. Furthermore, it dep
on the crystallite orientation. Constant adiabaticity sweeps
only possible for a single two-spin system in a single orien
tion (44, 45). Equation [27] is based on the simplified Ham
tonian of Equation [23] and2k`(T) denotes the angle be
tween the Hamiltonian and thez-axis of the double-quantum
subspace

2k`(T) = arctan

(
d′k`(T)

1k(T)+1`(T)

)
. [28]

Here,2kl(T) is always chosen between 0 andπ . A tangen-
tial variation of the RF amplitude is schematically shown
Fig. 3,
ω1(T) = ω̄1+ desttan

(
α ·
(

1

2
τ − T

))
, [29]
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with α = 2
τ
arctan(1RF

dest
). Here, dest and1RF are experimen-

tal parameters anddest should be close to the expected val
of the dipolar couplingd′k`(T). Because this value depen
on the crystallite orientation, a compromise has to be cho
The tangential variation of Eq. [29] will, approximately, corr
spond to a theoretical adiabatic variation around the HORR
condition,

1k(T)+1`(T) = d′k`(T) tan

(
αk` ·

(
1

2
τ − T

))
, [30]

with constant angular velocityαk` = d2k`(T)/dT if the sweep
is centered around the HORROR condition, ¯ω1. TheT-time de-
pendence ofd′k`(T) (throughQk`(T), see Eq. [22]) is small if
the amplitude of the applied RF fieldω1 exceeds the chemica
shift offset. Then, the identificationdest ≈ d′k`(T = τ/2) and
21RF ≈ 1k(0)+1`(0) can be made. It should be noted, ho
ever, that the precise shape ofω1(T) is not very important. In
the absence of relaxation all amplitude shapes with an ampli
variation from−1RF to1RF are equivalent, as long as Cond
tion [27] is fulfilled at all timesT . In practical applications
the amplitude sweep should be as short as possible to mini
relaxation effects. A tangential variation is a reasonable c
promise (24) between insensitivity tod′k`(T) and chemical-shift
offsets and optimization of sweep time.

2.4. The Time Evolution of the Density Operator

In the following, we will discuss the evolution of the de
sity operator during the DREAM period for a strongly coupl
spin pair and for uncoupled spins. We assume a fully adiab
passage (ak` → ∞) through the HORROR condition for th
spin pair. The discussion in this chapter is specific to two-s
systems and we replace the indices{k, `} with {1, 2}.

2.4.1. Coupled spin pair. For an adiabatic sweep the pa
of the initial density operator ˜σ (0−) that is proportional to the
Hamiltonian at the start of the sweep (T = 0) remains parallel to
the Hamiltonian until the end of the DREAM sweep. We assu
that the components of the density operator that are orthog
to *̃(0) decay during the sweep due to RF inhomogeneity
due to relaxation processes, or that they will be eliminated b
appropriate phase cycle. The density operator at the end o
DREAM period can, therefore, be calculated by the followi
two steps:

(i) Projecting the initial density operator ˜σ (0−) onto the sys-
tem Hamiltonian*̃(0) of Eq. [26] (in this and the following
paragraphs we will use “−” and “+” superscripts to signify
the times just before or just after a projection of the den
operator).
σ̃ (0+) = c1*̃(0), [31]
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with

c1 = Tr{σ̃ (0−) · *̃(0)}
Tr{*̃(0) · *̃(0)} . [32]

Using the pseudo spin-1/2 formalism introduced above, and th
initial density operatorσ (0−) = a1S1x +a2S2x in the laboratory
frame, we obtain, in the tilted frame of reference,

σ̃ (0−) = a1[sin(ϑ1(0))S1z+ cos(ϑ1(0))S1x]

+a2[sin(ϑ2(0))S2z+ cos(ϑ2(0))S2x], [33]

where ϑk(T) = arctan(ω1(T)/Ä(0)
k ) is the tilt angle intro-

duced earlier. For strong fields (compared to the chemical-
offset)ϑk(0) approachesπ2 for all nucleik and the cosine term
approach zero. Equation [33] simplifies under this conditio
σ̃ (0−) = a1S1z + a2S2z. The projection of the density oper
tor onto the Hamiltonian (Eq. [26]) according to Eqs. [31] a
[32] is performed in two steps. Because the full Hamiltonian
Eq. [26] can be written as the direct sum of the zero-quan
and the double-quantum Hamiltonian, we first project ˜σ (0−)
onto each of the two subspaces. This leads to the zero-qua
subspace contribution,

σ̃ 1 = [a1 sin(ϑ1(0))− a2 sin(ϑ2(0))]S1z , [34]

and to the double-quantum subspace contribution,

σ̃ 6 = [a1 sin(ϑ1(0))+ a2 sin(ϑ2(0))]S6z . [35]

In a second step, the projection of ˜σ1 andσ̃ 6 onto the zero-
quantum and double-quantum Hamiltonians of Eqs. [23]
[25] leads to

σ̃ 6(0+) = [a1 sin(ϑ1(0))+ a2 sin(ϑ2(0))] · cos(212(0))

× [cos(212(0))S6z + sin(212(0))S6x
]

[36]

for the double-quantum subspace while the zero-quantum
space is unchanged and results in

σ̃ 1(0+) = [a1 sin(ϑ1(0))− a2 sin(ϑ2(0))]S1z . [37]

Here,212(0) is the angle between the Hamiltonian*̃6(0) and
the z-axis of the double-quantum subspace (see Eq. [28]
the spinning frequency is considerably larger than the dip
couplingd′12, we can always start the sweep far off the HORR
condition. Then,212(0) approaches zero and, for the ideal c
with 212(0) = 0 andϑ1(0) = ϑ2(0) = π

2 , Eqs. [36] and [37]
simplify to
σ̃ 6(0+) = (a1+ a2)S6z
[38]

σ̃ 1(0+) = (a1− a2)S1z .
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Equations [36] and [37] and their simplified version of Eq. [3
describe the relevant density operator at the beginning o
DREAM sweep.

(ii) Rotation of the density operator by the DREAM swee
In the second step the density operator ˜σ follows the rotation of
the Hamiltonian and always stays parallel to the Hamilton
At the end of the sweep,

σ̃ (τ−) = c2*̃(τ ) [39]

holds, leading to

σ̃ 6(τ−) = [a1 sin(ϑ1(0))+ a2 sin(ϑ2(0))] · cos(212(0))

× [cos(212(τ ))S6z + sin(212(τ ))S6x
]

[40]

and

σ̃ 1(τ−) = [a1 sin(ϑ1(0))− a2 sin(ϑ2(0))]S1z . [41]

Here,212(τ ), the angle betweeñ*6(τ ) andS6z , is defined as

212(τ ) = arctan

(
d′12(τ )

11(τ )+12(τ )

)
. [42]

The initial projection with212(0), the rotation, and the fina
projection with212(τ ) of the density in the double-quantu
subspace are schematically shown in Fig. 6.

For the ideal case212(0) = 0,212(τ ) = π , andϑ1(0) =
ϑ2(0)= π/2 we obtain

σ̃ 6(τ−) = −(a1+ a2)S6z
[43]

σ̃ 1(τ−) = (a1− a2)S1z .
FIG. 6. Schematic representation of the initial projection with212(0), the
subsequent rotation imposed by the rotation of the Hamiltonian, and final pro-
jection with212(τ ) of the the density operator in the double-quantum subspace.
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In our application, the DREAM period is always followe
by detection in the usual rotating frame. To obtain the d
sity operator in this frame,σ (τ+), we first transform back from
the tilted frame to the rotating frame using the rotation mat
R(τ ) = πk=1,2 exp(iϑk(τ )Sky) and then project onto the detec
tion operatorsS1x andS2x to obtain the part of the density op
eratorσ (τ+) that contributes to the integrated signal intens
of the two resonances. The final density operator projected
these detection operators is given by

σ (τ+) = (a11+ a21)S1x + (a22+ a12)S2x, [44]

with

a11=−1

2
a1 sin(ϑ1(0)) sin(ϑ1(τ ))[cos(212(0)) cos(212(τ ))−1]

a22=−1

2
a2 sin(ϑ2(0)) sin(ϑ2(τ ))[cos(212(0)) cos(212(τ ))−1]

a12=−1

2
a1 sin(ϑ1(0)) sin(ϑ2(τ ))[cos(212(0)) cos(212(τ ))+1]

a21=−1

2
a2 sin(ϑ2(0)) sin(ϑ1(τ ))[cos(212(0)) cos(212(τ ))+1].

[45]

In the following, we will omit the “+” superscript on the time
variableτ and denote the relevant part of the final density ope
tor after the DREAM sequence byσ (τ ). The four coefficientsak`

denote the polarization (or coherence, depending on the fr
of reference) transferred from spink to ` during an adiabatic
DREAM sweep. They can be directly mapped as cross peaks
diagonal peaks in a 2D correlation experiment. If the adiab
sweep starts and ends far away from the HORROR condi
(i.e.,212(0)≈ 0 and212(τ ) ≈ π ) and relaxation processes ca
be neglected, no polarization remains on the source spin:

a11 ≈ 0

a22 ≈ 0
[46]

a12 ≈ −a1 sin(ϑ1(0)) sin(ϑ2(τ ))

a21 ≈ −a2 sin(ϑ2(0)) sin(ϑ1(τ )).

In practical applications for15N or 13C nuclei, conditions
where Eq. [46] is valid can easily be realized. The scaled dip
couplingd′12, which does not exceed 1 kHz, is smaller than t
sum of the RF fields,11(0)+12(0), and cos(212(0))≈ 1.

If the chemical-shift offsets are small compared to the MA
frequency, a complete polarization exchange between the
spins takes place with

a11 = 0

a22 = 0 [47]
a12 = −a1

a21 = −a2
PLING IN SOLID-STATE NMR 89
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and

σ (τ ) = −(a2S1x + a1S2x). [48]

The initial magnetization on spin 1 ends up on spin 2 and v
versa. This leads to a 2D spectrum, schematically show
Fig. 2.

The terms sin(ϑk(t)) in Eq. [46] are a measure for the lo
of magnetization during the experiment due to the projecti
described above and depend only on the ratio between RF-
strength, which is linked to the MAS frequency, and chemic
shift offset. For large chemical-shift offsets where the ideal
uation of Eq. [48] is not fulfilled, it is obvious that in gener
a12 6= a21.

Figure 7 illustrates the contributions of the relevant fact
to the transfer efficienciesa11,a22,a12, anda21 described by
Eq. [45] as a function of the frequency offset, i.e., the offse
the carrier frequency from the center between the two sp
The thick lines show the influence of the cos(212(t)) terms
while the thin lines illustrate the influence of the sin(ϑk(t))
terms on the transfer efficiencies. It can clearly be s
that the cos(212(t)) term defines the window where tran
fer can take place while the sin(ϑk(t)) term determines the
amount of transfer. The cos(212(t)) terms are related to th

FIG. 7. Contributions to the transfer efficiencies (a)a11, (b) a22, (c) a12,
and (d)a21 described by Eq. [45] as a function of the frequency offset, i
the offset of the carrier frequency from the center between the two spins
thick lines shows the influence of the cos(212(t)) terms while the thin lines
illustrate the influence of the sin(ϑ12(t)) terms on the transfer efficiencies. It ca
clearly be seen that the cos(212(t)) term determines whether we will see an
transfer at all while the sin(ϑ12(t)) term determines the amount of the transfer

dipolar coupling constant ofd12= 0.08·ωr, an isotropic chemical-shift difference
Ä0

1−Ä0
2= 0.425ωr, an average RF amplitude of ¯ω1= 0.445. ·ωr, and an initial

offset of1RF = 0.18 · ωr were used for the calculations.
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TABLE 1
Scaling Factors for the Four Sweeps (Fig. 3c) in Coupled Spin Pairs and Isolated Spins

Dipolar coupled Isolated

a11 a22 a12 a21 akk

First scan 0 0 −a1 sin(ϑa
1) sin(ϑb

2) −a2 sin(ϑa
2) sin(ϑb

1) ak sin(ϑa
k ) sin(ϑb

k )

Second scan a1 sin2(ϑa
1) a2 sin2(ϑa

2) 0 0 ak sin2(ϑa
k )

b a b a b a
Third scan 0 0 −a1 sin(ϑ1) sin(ϑ2) −a2 sin(ϑ2) sin(ϑ1) ak sin(ϑk ) sin(ϑk )

Fourth scan a1 sin2(ϑb
1) a2 sin2(ϑb

2) 0 0 ak sin2(ϑb
k )
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trajectory the density operator traces out in the double-qua
subspace. The quenching of all transfer outside the sh
defined cos(212(t)) window is caused by the fact that t
spins never go through the HORROR condition outside
window. At the edge of the window, we have212(t) = π/2.
The terms containing sin(ϑ1(t)) and/or sin(ϑ2(t)) are only re-
lated to the projection of the density operator onto the ef
tive field. The window of transfer can be enlarged by choos
a large value for1RF. However this implies that either at th
start or at the end of the sweep the amplitude of the RF
will be smaller and that the scaling caused by the terms de
dent on sin(ϑ1(t)) and/or sin(ϑ2(t)) may become more severe.
an actual experiment, the product of both contributions wil
observed.

The coefficients of Eqs. [45] have been evaluated for all
amplitude shapes shown in Fig. 3c. The anglesϑk(0) andϑk(τ )
in any of the four scans can be expressed by the initial and
angles of the first scan of Fig. 3c, which we denote byϑa

k and
ϑb

k , respectively. For example, for the first scanϑk(0) = ϑa
k

andϑk(τ ) = ϑb
k , while for the second scanϑk(0) = ϑk(τ ) =

ϑa
k . The transfer efficiencies for the four shapes are give

Table 1.

2.4.2. Uncoupled spins.For isolated spins, no polarizatio
transfer takes place. In two-dimensional spectra, all signals
isolated spins stay on the diagonal. The density operator,σ (τ ),
is evaluated by taking into account the projection of the
tial density operator onto the Hamiltonian (which consists
chemical-shift and RF terms) at the beginning of the sweep
back onto the detection operator at timeτ . One obtains

σ (τ ) =
∑

k

akk Skx. [49]

The value of the coefficientakk is given, for the four shap
variations of Fig. 3c, in Table 1. For small chemical-shift offs
ϑk(τ )→ 0, the signal intensity is not influenced by the DREA
sweep at all.
σ (0)= σ (τ ) =
∑

k

ak Skx [50]
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2.4.3. Shape cycles.The effect of finite chemical-shift off
sets as expressed by the angleϑk < π/2 on the peak intensitie
in a two-dimensional correlation experiment consists only of
tensity variations for the cross peaks. The influence decre
with increasing spinning frequency because the applied RF-
strength at the center of the DREAM sweep is equal to half
spinning frequency. For spinning frequencies, which are la
compared to isotropic chemical-shift differences, the influe
of the chemical-shift offset is, therefore, rather minor.

In spin-pair filtering experiments, however, these influen
are more pronounced because the experiment requires a
suppression of the uncoupled (or very weakly coupled) sp
The shortest shape cycle consist of two shapes, namely the
and second ones shown in Fig. 3c. From Table 1 we ob
the following coefficients for the signal intensity of an isolat
spin,

ak sin
(
ϑa

k

)[
sin
(
ϑa

k

)− sin
(
ϑb

k

)]
. [51]

The experiments in which four shapes are combined have ad
tages for the suppression of uncoupled spins. The combin
of all four shapes for an isolated spin leads according to Tab
to

ak
[

sin
(
ϑa

k

)− sin
(
ϑb

k

)]2
. [52]

For angles aroundϑa
k ≈ϑb

k ≈π/2 or sin(ϑa
k )≈ sin(ϑb

k )≈ 1, the
better suppression behavior of the four-sweep version can e
be seen from the fact thatε2<ε for ε= sin(ϑa

k )− sin(ϑb
k )¿ 1.

For a particular choice of chemical-shift offsets the fil
efficiency for spin pairs (Figs. 8a–8c) and for isolated sp
(Figs. 8d–8f) in a spin-pair filter experiment are shown a
function of the carrier offsetωoffset which is referenced to th
center frequency of the two spins. Figure 8a shows the filte
ficiency of the sum magnetization of a coupled spin pair, w
Figs. 8b and 8c show the efficiencies for the two spins separa
Figure 8d shows the filter efficiency of the sum magnetiza
for two uncoupled spins while Figs. 8e and 8f show the t

spins separately. More details of the simulation can be found
in the figure legend. The thick lines shows the results for the
combination of all four experiments of Fig. 3c. The dashed and
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FIG. 8. Evaluation of Eqs. [44] and [45] for (a)–(c) a dipolar-coupled two-spin system withd12 = 0.08 · ωr and for (d)–(f) two isolated spins withd12 = 0 as
a function of the frequency offset from the carrier of the RF field. The frequency offset zero is defined as the center between the chemical shifts of theo spins.
An isotropic chemical-shift differenceÄ0

1 −Ä0
2 = 0.425ωr, an average RF amplitude of ¯ω1 = 0.445· ωr, and an initial offset of1RF = 0.18 · ωr were used for

the calculations. In all six plots the thick line shows the normalized intensity for the combination of four experiments according to the modulation scheme shown

in Fig. 3c. The dashed lines and dash–dotted lines show the normalized intensities for the combination of scans 1 and 2 and scans 3 and 4, respectively. (a) and
(d) show the total intensity summed over both spins. (b) and (e) show the signal intensity for spin 1 and (c) and (f) show the signal intensity for spin 2. The vastly
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improved suppression of the four-scan cycle for uncoupled spin intensity i

dash–dotted lines show the results for a combination of the
and second, and the third and fourth, scans of Fig. 3c. It
clearly be seen that the suppression of the signal from un
pled spins is significantly improved using the combination of
four amplitude modulation schemes.

3. EXPERIMENTAL

All experiments were done on a Varian-Chemagnetics CM
400 Infinity spectrometer operating at a proton Larmor f
quency of 400 MHz. The only exceptions are the data in Fig
which were measured on a Varian-Chemagnetics CMX-
Infinity spectrometer operating at a proton Larmor freque
of 300 MHz. Both instruments were equipped with a 2.5-m
double-resonance MAS probe. Unless indicated otherwise
spinning frequency was set to 28 kHz in all experiments. Ty
cal spinning-frequency stability varied depending on the sam
but was always better than±50 Hz. All experiments feature
a variable-amplitude cross-polarization period with a tang
tial variation of the13C RF field (26). The adiabatic-passag
Hartmann–Hahn (APHH) sweep was centered around the−1
Hartmann–Hahn matching condition with an initial offset

about 12 kHz for experiments atωr = 28 kHz and correspond-
ingly smaller at slower spinning frequencies. The sweep w
approximated by 1000 discrete amplitude steps. A typical1H
clearly seen from (d) to (f ).
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RF-field strength during CP was 100 kHz and the total m
ing time was set to 1.5 ms. Continuous-wave decoupling
the protons was employed during the homonuclear13C recou-
pling using DREAM. The amplitude of this decoupling fie
was always equal to the amplitude of the TPPM decoupling (46)
used during acquisition and was set sufficiently strong to av
Hartmann–Hahn matching. Typically, the decoupling amplitu
was around 140–160 kHz. The TPPM pulses were optimized
each experiment. Depending on the exact strength of the RF fi
they had a duration of 3.2–3.6µs and a phase offsetφ of ±8
to±10◦.

The tangential RF variation of the DREAM sweeps was i
plemented by calculation of an array of 1000 discrete amplitu
for a full sweep. Different length sweeps were achieved by v
ation of the individual step sizes. The exact parameters for
different DREAM sweeps are indicated in the legends to
figures.

All experiments on sodium propionate were performed o
sample enriched to 99%13C2 on C-2 (methylene group) and C-
(methyl group). The zinc acetate sample was crystallized fr
a solution of ca. 5% fully labeled 1,2-13C2-zinc acetate and ca
95% natural-abundance zinc acetate in water. The samp

13
as
fully labeled [U- C] tyrosine was purchased from Cambridge
Isotope Laboratories, Inc. (Andover, MA) and used without fur-
ther purification.
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FIG. 9. Experimental signal intensity after DREAM filtering as a functio
of the average DREAM amplitude for a series of spinning frequencies rang
from (a)ωr/(2π ) = 28 kHz to (h)ωr/(2π ) = 14 kHz in steps of 2 kHz at
a B0 = 7.0 T static magnetic field. The pulse sequence of Fig. 3a was us
For each of the plots the vertical scale is normalized to the total intensity
a cross-polarization experiment at the corresponding spinning frequency.
total sweep time was setτ = 8 ms. For (a) to (e) an initial amplitude offset
1RF = 5.2 kHz and for (f) to (h)1RF = 3.9 kHz was used. A doubly labeled
sample of sodium propionate was used. The dashed marks on the frequency
mark the expected DREAM recoupling condition.

Simulations were programmed in C++ using the GAMMA
spin-simulation environment (47). All simulations are powder
averages of 300 orientations, where the individual orientatio
were determined by the method of Cheng and colleagues (48).

TABLE 2
Simulation Parameters for Sodium Propionate and Zinc Acetate

2,3-13C2-Sodium propionate 1,2-13C2-Zinc acetate

CH3 CH2 CH3 COO−

δ −670 Hz −2400 Hz −2310 Hz −8040
η 1 0.64 0.5 0.32
(α, β, γ ) (0◦, 0◦, 0◦) (90◦, 30◦, 0◦) (0◦, 0◦, 0◦) (0◦, 90◦, 0◦)
1σiso 1858 Hz 16478 Hz
dCC −2250 Hza −2324 Hzb

JCC 36 Hz 52 Hz

Note. The Euler angles rotate from the PAS of the CSA to the PAS of t

dipolar interaction.

a|−→rcc| = 1.5 A
a

(estimated).
b|−→rcc| = 1.484 A
a
.

, AND MEIER
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The time dependence of the Hamiltonian was approxima
by subdividing each rotor period into 500 time steps with
time-constant Hamiltonian. The parameters used for the s
lations of zinc acetate and sodium propionate are summariz
Table 2.

4. RESULTS AND DISCUSSION

4.1. Spin-Pair Filters

In the following, the features of the DREAM recouplin
scheme are characterized experimentally in the context
two-spin filter but the basic properties (e.g., the transfer e
ciency) are the same for the application as a mixing seque
in two-dimensional correlation experiments. The pulse sch
for the spin-pair filter is shown in Fig. 3b. The intensity of t
resulting NMR signal as a function of the RF-field strength
the center of the sweep is shown in Fig. 9 for several differ
spinning frequencies. The carrier frequency was approxima
(but not exactly to avoid interference by theJ-coupling) cen-
tered between the two carbon resonances. The offset from
exact center between the two resonances was about 270
which is significantly more than the size of theJ-coupling. A
sample of 2,3-13C2-sodium propionate was used in these e
periments. As expected, maximum intensity for the spin-p
filtered signal is found when the sweep is centered around
HORROR condition (Eq. [17]), marked by a thick dotted ti
mark on thex-axis of Fig. 9. The efficiency of the recouplin
process for a matched sweep is around 75% referenced t
signal intensity of a normal cross-polarization experimen
the same spinning frequency. The efficiency does not dep
significantly on the MAS frequency in the range between
and 28 kHz. The independence from the spinning freque
is due to the rather small isotropic chemical-shift difference
tween the two resonances of the doubly labeled 2,3-13C2-sodium
propionate.

The chemical-shift offset dependence of the DREAM
quence can be measured by changing the carrier frequency
RF irradiation. The results of two such experiments, at the M
frequencies of 28 and 14 kHz, are shown in Figs. 10a and
respectively. The open markers show the results from exac
merical simulation using the GAMMA (47) simulation package
to solve the Liouville–von Neumann equation. The parame
used for the simulation are summarized in Table 2. Consi
ing that there are no adjustable parameters in this simula
the agreement with the experiment is very good. The solid
shows the calculated filter efficiency based on Eq. [45]. T
chemical-shift dependence is smaller at higher RF-field stre
(Fig. 10a) and is more pronounced at slower MAS frequen
and correspondingly lower RF fields (Fig. 10b). The differen
between the solid line on the one hand and the experime

data and numerical simulations on the other hand can be ex-
plained by nonadiabatic behavior of part of the dipolar-coupled
pairs in the sample during the amplitude sweep. Although the
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FIG. 10. Two-spin filter efficiency in doubly labeled 2,3-13C2-sodium pro-
pionate as a function of the carrier offset from the center between the two
nances at a spinning speed of (a)ωr/(2π ) = 28 kHz and (b)ωr/(2π ) = 14 kHz.
The efficiency is defined as the experimental intensity normalized to the inte
obtained from a cross-polarization experiment at the same spinning frequ
The filled circles are the experimental data. The open diamonds correspo
numerical simulations with the parameters described in the text. The line c
sponds to evaluation of Eqs. [44] and [45] with the parameters which are g
below and in Table 2. In both (a) and (b) the total length of the tangential sw
was 8 ms. The center of the sweep was set to 13.9 and 7.8 kHz, correspo
to about 0.5 · ωr/(2π ) with an initial offset of 5.2 and 3.9 kHz for (a) and (b
respectively.

size of effective dipolar couplingd′k`(T) is not very dependen
on T , it strongly depends on the orientation of the crystal
as expressed by the angleθk` (See Appendix). This leads to
distribution of effective dipolar coupling constants. Spin s
tems with small couplings do not behave adiabatically under
experimental conditions chosen and give rise to the differen
between the simplified model and the experimental and num
data in Fig. 10.

Figure 11 shows13C spectra of 5% doubly labeled zinc a
etate with (Fig. 11a) and without (Fig. 11b) spin-pair filterin
The fully labeled zinc acetate leads to aJ-doublet for both lines.
The natural-abundance zinc acetate leads to a singlet for
of the two resonances. The center of gravity of the double
shifted from the resonance position of the singlet due to sec
order effects. This effect has been described before for slo
spinning (2, 49). This sample has a much larger chemical-s

difference and was used to investigate the dependence of
filter efficiency on the RF amplitude at the center of the swe
LING IN SOLID-STATE NMR 93
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FIG. 11. (a) DREAM spin-pair filtered and (b) cross-polarization spectr
of a sample of 5% labeled 1,2-13C2-zinc acetate at a spinning speed ofωr/(2π ) =
28 kHz. For the amplitude variation of the DREAM experiment a total sw
length of 12 ms was used. The central amplitude of the sweep was set to 11.
with an initial offset of 2.8 kHz. The carrier frequency of the RF field was pla
in the center between the two resonances.

(ω̄1) and on the carrier offset from the center between the
chemical shifts (ωoffset). The dependence of the DREAM filte
efficiency onω̄1 for a fixed spinning frequency of 28 kHz i
shown in Fig. 12. Taking into account the chemical-shift offs
of the two resonances in zinc acetate the HORROR cond
is fulfilled for a spinning frequency of 28 kHz at an RF fie
of about 12 kHz. This RF-field strength is about 2 kHz low
than the expected resonance condition for a spin pair wi
small chemical-shift difference. The decrease is caused by

FIG. 12. Variation of the central amplitude ¯ω1 of the sweep. The sam
the
ep

parameters were used as for the spectrum shown in Fig. 11a with the exception
of the central amplitude. The filled circles are the experimental data and the
open diamonds represent the simulated data.
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FIG. 13. Variation of the total length of the sweep. The filled circles a
the experimental data. The same parameters were used as for the spect
Fig. 11a. For short durations of the sweep (τ < 1.5 ms) incomplete suppres
sion of single-quantum coherence signals made accurate determination
double-quantum filter efficiency difficult. As a consequence the different sig
were not deconvoluted, but simply the maximum intensity was taken. The
diamonds represent the simulated data.

large isotropic chemical shifts which contribute to the stren
of the effective RF field. Since it is the sum of the effecti
RF-field strengths which are matched to the spinning freque
according to Eq. [17], the amplitude of the RF field at t
HORROR condition becomes smaller. The open diamond
Fig. 12 correspond to simulated data and follow closely
experimental behavior. The maximum efficiency of the two-s
filter is about 60% and somewhat lower than in sodium pro
onate. The reduction of the filter efficiency is a conseque
of the larger isotropic chemical-shift difference of the two co
pled spins. The efficiency is, however, expected to increase
higher spinning frequencies.

Figure 13 shows the dependence of the filter efficiency on
variation of the total sweep timeτ . The maximum efficiency for
zinc acetate is almost reached for a sweep time around 3–7
The same behavior was previously observed in sodium pr
onate. The simulated data are again included as open diam
and the agreement between simulated and experimental d
reasonable.

The offset dependence of the DREAM filter efficiency in zi
acetate is shown in Fig. 14. The filled dots in Fig. 14a are
experimental overall recoupling efficiency (sum magnetizati
while the filled dots in Figs. 14b and 14c show the filter efficien
for the two resonances separately. Simulated data are a
included as open markers. The simulated data in Figs. 14b
14c were corrected for the experimentally determined une
cross-polarization efficiencies of the CH3 and CO resonances
The adiabatic sweep exchanges the intensities of both spins
ing the mixing timeτ . The cross polarization to the CH3-group
is more efficient and, therefore, the normalized signal on the

group is more intense.

The dependence of the DREAM filter efficiency as a functi
of the sweep width1RF is shown in Fig. 15, where ¯ω1 was
, AND MEIER
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set to the HORROR condition. The DREAM filter efficienc
is good as long as the initial offset is chosen to be larger th
ca. 1.5 kHz. Such an offset ensures a reasonable initial tilt an
212(0) ≈ 15◦ for the largest dipolar coupling. The total swee
time was kept constant atτ = 8 ms. Therefore, the adiabaticity
decreases with increasing1RF, leading for1RF > 2.5 kHz
to a decreased DREAM filter efficiency and an increase in
intensity of the unwanted signals from single spins which a
marked by squares in Fig. 15.

4.2. Two-Dimensional Correlation Experiments

Figure 3a shows how the DREAM sequence can be incor
rated into a two-dimensional correlation experiment. During t
mixing time of the experiment, cw decoupling was applied

FIG. 14. Variation of the carrier frequency of the RF irradiation. The sam
parameters were used as for the spectrum of Fig. 11a. The frequency ax
referenced to the center between the two resonances. (a) The total exper
tal double-quantum efficiency calculated by the integration of all lines fro
1,2-13C2-zinc acetate divided by the intensity of the same lines from a cro
polarization experiment. The experimental data are shown as filled circles.
open diamonds represent simulated data. (b) The normalized intensity o
carbonyl resonance normalized by the intensity of the methyl resonance f
a cross-polarization experiment. Experimental data are marked by filled d
The open diamonds represent simulated data for the carbonyl resonance o
acetate. (c) The normalized intensity of the methyl resonance normalized
the intensity of the carbonyl resonance from a cross-polarization experim
The open diamonds represent simulated data. The strong difference in beh
on
between the two sets of data indicate both the uneven polarization by the cross
polarization and the different projection onto the RF field as a function of the
frequency offset.
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FIG. 15. Variation of the initial offset from the central amplitude of th
sweep. The same parameters were used as for the spectrum of Fig. 11a w
exception of the initial offset. The filled circles show the normalized intensit
the signals from the 5% doubly labeled zinc acetate while the open squares
the intensity of the natural-abundance zinc acetate. The open diamonds rep
simulated data for a dipolar-coupled spin pair with parameters as describ
the text and Table 2.

the proton channel. Duringt1 andt2 TPPM decoupling was used
A 2D spectrum of sodium propionate with a DREAM sweep
τ = 8 ms duration is shown in Fig. 16. This sweep has an a
baticity parameter ofa(T) ≥ 4.3 for a crystallite with a “typical”
dipolar interaction of 1.5 kHz. This value for the dipolar co
pling is the weighted average over the powder distribution of
(absolute value of the) dipolar coupling in sodium propiona
Most of the intensity is observed in the cross peaks, indica
an efficient transfer of polarization as expected for an adiab
sweep. This does not mean, however, that 100% of the p
ization is transferred, because, according to Eq. [46], the in
sity of the cross peaks is scaled by the projection onto the e
tive field. Because of the double-quantum mechanism, the c
peaks appear with negative intensity.

The ±π
2 pulse in alternating scans after the DREAM s

quence (see Fig. 3a) is necessary to suppress compone
the density operator that are orthogonal to the RF field at
beginning of the DREAM sequence. The phase of this puls
aligned with the phase of the DREAM sweep. The orthogo
components decay due to RF-field inhomogeneities for lon
DREAM periods and tend to give rise to dispersive com
nents in the lineshape. Figure 17 shows a two-dimensional13C–
13C correlation spectrum of sodium propionate with (Fig. 1
and without (Fig. 17b) the±π

2 pulse for a short DREAM mix-
ing time of 0.5 ms. The corresponding adiabaticity param
is a = 0.26.

The cycling of the amplitude shapes (see Fig. 3c) was not u
for the two-dimensional experiments. Therefore, coupled s
lead to negative cross peaks and no diagonal peaks and u
pled spins to positive diagonal peaks. Application of the sh

cycle and inversion of the receiver phase between alterna
scans would lead, for the coupled spins, to negative cross pe
and to negative diagonal peaks. The intensities of the cross

u-
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diagonal peaks become equal for all anglesϑ → π/2. This can
be seen by adding the columns in Table 1 and assuming e
initial intensity for each of the sites (a1 = a2). It would fully
suppress uncoupled spins according to the same principle a
spin-pair filter (see Section 2.4). Such an experiment migh
advantageous for selectively labeled samples with a high na
abundance background.

In this paper we concentrated on the characterization of
DREAM experiment in the simple case of two-spin system
Nevertheless, we will now briefly discuss the application
larger spin systems. An experimental two-dimensional DRE
correlation spectrum of uniformly13C-labeled tyrosine is show
in Fig. 18 for a short mixing time of 0.5 ms. For larger spin s
tems, the observation of spectra at short mixing times lead
spectra that are easier to interpret (analogous, e.g., to the
ation in chemical exchange or spin-diffusion spectra which
most informative in the initial-rate regime) than the spectra
longer mixing times. Although the adiabatic condition is v
lated, all nearest-neighbor correlations can be observed in
spectrum. The adiabaticity parameter is about 0.3 for two
rectly bonded carbon spins. In some cases, relayed transfer
two bonds can also be seen. These relayed correlations are
cated by arrows in Fig. 18 and can be recognized in the spec
as positive cross peaks. The different signs of cross peaks
even or odd numbers of transfer steps can be considered
of the advantages of double-quantum coherence transfer. I
clearly be seen that the recoupling takes place over the e
chemical-shift range. Both the correlation between the carb
and the Cα and that between the Cα and the Cβ carbons are
present.

The multispin spectrum is not symmetric about the diago
which is clearly seen in Fig. 18. There are a number of source
asymmetric cross-peak intensities. One source is the variati
cross-polarization efficiencies for the different resonances (50).
In our case, however, the dominant reason is different. W
all coupled spin pairs irrespective of the chemical-shift offs
go through the HORROR condition at some point during
DREAM sweep, they do not do so at the same time. The
fore, the amplitude of the cross peaks in many-spin syst
depends on the order in which different transitions of a sys
with more than two spins pass through the HORROR condit
If the experiment of Fig. 18 is performed with a down–up ra
(Fig. 3c, third scan) instead of an up–down ramp (Fig. 3c, fi
scan) the resulting spectrum is the same as that of Fig. 18
mirrored about the diagonal. Obviously, adding up the two
ferent spectra leads to a symmetric spectrum. The details o
spin dynamics in fully labeled compounds is currently un
investigation.

4.3. Practical Considerations

For the practical implementation of the DREAM reco

aks
and
pling sequence it is in general not necessary to take into ac-
count all parameters which influence the behavior of the system
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purge pulse after the sweep. For both spectra the total length of the sweep
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FIG. 16. Two-dimensional correlation spectrum of a sample of fully labe
2,3-13C2-sodium propionate. The DREAM sweep of 8 ms was applied with
carrier frequency set to 100 ppm, with ¯ω1 = 11.5 kHz, and1RF = 4 kHz.
Contours are placed at−40,−20,−10,−5, and−2.5% of the maximum absolute
intensity in the data set.

during the DREAM experiment. To obtain good (although n
optimized) results, it is sufficient to follow some simplifie
rules. The DREAM sequence has four parameters: the a
age RF-field amplitude, ¯ω1, the initial deviation of the RF field
from its average value,1RF, the total length of the DREAM
period, τ , and the shape parameter,dest. With these parame
ters, the amplitude sweep is completely defined accordin
Eq. [29].

The lengthτ must be longer than 1/dk` and short compared
to the relevant relaxation timesT1ρ andTDQ

1d . Heredk` denotes
the dipolar-coupling constant that mediates the transfer andT1ρ

andTDQ
1d denote the rotating frame relaxation times for the sp

locked magnetization far from the HORROR condition and
a “HORROR-type” dipolar state at the HORROR conditio
For a13C–13C one-bond interaction,τ ≥ 0.5 ms leads already
to strong cross peaks in a 2D spectrum, maximum transfe
reached after 3–7 ms. The value ofdest defines the shape fo
the amplitude sweep. Large values ofdest lead to almost linear
amplitude sweeps, and small values to a pronounced tange
form. The optimum choice ofdest helps to minimize the sweep
time τ . We distinguish three cases.

(i) If the width of the spectrum (or the part of it involved i
polarization transfer) is much smaller than the MAS frequen
(fast spinning limit), we set ¯ω1 ≈ 0.5 · ωr and1RF ≈ 2 · dk`,
wheredk` is an estimate for the largest dipolar coupling in t
system. For directly bound carbons,dk`/(2π ) ≈ 2 kHz and
1RF/(2π ) ≈ 4 kHz. Furthermoredest ≈ dk` and, again for
carbon,dest/(2π ) ≈ 2 kHz. The lengthτ is chosen as indicated
in the preceding paragraph.
(ii) If the width of the spectrum is not much smaller tha
the MAS frequency, but still smaller than about±0.25 · ωr,
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practical values for DREAM are ¯ω1 ≈ 0.45 · ωr (somewhat
smaller than above because the effective HORROR cond
occurs at lower applied fields in the presence of chemical-s
offsets) and1RF ≈ 0.2 · ωr. A good compromise for the shap
parameter isdest≈ 0.5 ·1RF ≈ 0.1 · ωr. The lengthτ is chosen
as indicated above.

(iii) If the width of the spectrum exceeds±0.25 · ωr, the
DREAM recoupling will become frequency selective and sp
outside the specified range will not significantly contribute
the spin dynamics. However, it is possible to recouple asin-
gle isolated spin pair (or a number of resonances grou
around two resonances) with an isotropic chemical-shift
ference up to about 0.9 · ωr. In this case, there is a sing
DREAM condition with an amplitude ¯ω1 smaller than1

2ωr. The
amplitude variation should be centered around this condi

FIG. 17. Two-dimensional correlation spectrum of a sample of fully
beled 2,3-13C2-sodium propionate (a) with and (b) without the use of
n
was 0.5 ms. All other settings were as in Fig. 16. Contours are placed at
−40,−20,−10,−5,−2.5, 2.5, 5, 10, 20, and 40% of the maximum positive
intensity in the data set.
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FIG. 18. Two-dimensional correlation spectrum of [U-13C] tyrosine using
the pulse sequence of Fig. 3. The total duration of the sweep was set to 0.
leading to a nonadiabatic behavior. The amplitude of the sweep at the ce
point was chosen to be ¯ω1 = 11.5 kHz with an initial offset of1RF = 3.75 kHz.
The carrier frequency was set around 100 ppm. A total of 128t1 increments
with four scans each were acquired. The lines indicated the directly bon
carbon atoms while the arrows indicated cross peaks in phase with the si
on the diagonal. A resolution of 39 and 195 Hz per point was set int2 and
t1, respectively. The± π2 purge pulse had a duration of 2.6µs. Contours were
placed at−40,−20,−10,−5,−2.5, 2.5, 5, 10, 20, and 40% of the maximum
positive intensity in the data set.

√
(Ä0

1)2+ (ω̄1)2+
√

(Ä0
2)2+ (ω̄1)2 = ωr and1RF ≈ 2 · d12 can

be used.

5. CONCLUSIONS

The performance of the DREAM adiabatic dipolar-recoupli
scheme was characterized in the context of one-dimensiona
two-dimensional experiments. The experimental results ar
qualitative agreement with predictions based on a simplifi
analytical model and in excellent quantitative agreement w
exact spin-dynamic calculations.

The advantages of the adiabatic schemes, namely a b
matching behavior and a high transfer efficiency, have both b
realized in the examples investigated. For spin pairs, an effic
exchange of populations is obtained by a DREAM sweep and
intensity is found in the cross peaks of the two-dimensional c

relation spectrum. Some overall intensity loss is caused by p
jections onto the effective-field directions and deviations fro
adiabaticity. Therefore, the spin-pair filter efficiency is less tha
LING IN SOLID-STATE NMR 97
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100% but was found to be between 70 and 80% for sodi
propionate and in excess of 60% for zinc acetate.

A four-shape cycle was introduced which leads to a be
suppression of single-spin signals in spin-pair filtering expe
ments.

It was demonstrated that a two-dimensional DREAM corre
tion experiment of a uniformly labeled amino acid maps out
complete molecular connectivity. The DREAM sequence see
generally applicable to detect the connectivity in uniformly l
beled samples. It provides a new tool for resonance assignm
and, if long-range dipolar interactions can be detected, for st
ture determination. The experiment seems particularly attrac
in connection with fast MAS, as the broadbandedness of the
periments increases with increasing MAS spinning frequen
However, applications where the DREAM sequence is use
a frequency-selective manner are also conceivable and hav
cently been reported (51, 52) using correspondingly slower MAS
rates.

APPENDIX

The Fourier components of the spatial part of the chemic
shift interaction are given by

Ä
(±1)
k = γ B0

3
√

2
δk sin(θk)e±iϕk [(3− ηk cos(2χk)) cos(θk)

± iηk sin(2χk)]
[A-1]

Ä
(±2)
k = γ B0

6
δke±2iϕk

[
3

2
sin2(θk)+ ηk

2
(1+ cos2(θk)) cos(2χk)

∓ iηk cos(θk) sin(χk)

]
.

Here,δk andηk denote the anisotropy and asymmetry of t
CSA tensor and the three Euler anglesϕk, θk, χk describe the
time-independent transformation from the rotor-fixed coor
nate system to the principal-axis system of the CSA tenso
spink.

The Fourier components of the spatial part of the dipolar
teraction are given by

d(±1)
k` = −

dk`

2
√

2
sin(2θk`)e

±iϕk`

d(±2)
k` =

dk`

4
sin2(θk`)e

±2iϕk` [A-2]

dk` = −µ0γ
2h--

4πr 3
k`

.

ro-
m
n

The Euler anglesϕk`, θk` describe the transformation from the
rotor-fixed coordinate system of the dipolar-coupling tensor be-
tween spinsk and` to the principle-axis system.
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The scaling coefficients for the dipolar part of the Hamilton
in the tilted frame of reference are given by

Ad
k`(T) = 2 cosϑk cosϑ` − sinϑk sinϑ`

Bd
k`(T) = −1

2
− 1

2
cosϑk cosϑ` + sinϑk sinϑ`

Rd
k`(T) = − cosϑk sinϑ` − 1

2
sinϑk cosϑ` . [A-3]

Vd
k`(T) = − sinϑk cosϑ` − 1

2
cosϑk sinϑ`

Qd
k`(T) = 1

2
− 1

2
cosϑk cosϑ` + sinϑk sinϑ`

and the scaling factors for the J-coupling part of the Hamilton
are given by

AJ
k`(T) = cosϑk cosϑ` + sinϑk sinϑ`

BJ
k`(T) = 1+ cosϑk cosϑ` + sinϑk sinϑ`

RJ
k`(T) = sinϑk cosϑ` − cosϑk sinϑ` [A-4]

V J
k`(T) = − sinϑk cosϑ` + cosϑk sinϑ`

QJ
k`(T) = −1+ cosϑk cosϑ` + sinϑk sinϑ`

In Equations [A-3] and [A-4] the anglesϑk andϑ` are the tilt an-
gles between the direction of thez-axis in the rotating frame an
the direction of thez-axis in the tilted frame, which is aligne
with the direction of the effective field of spinsk and`, respec-
tively. All angles areT-time dependent.
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